Zusammenfassung
Die Gewebe der Augenoberfläche und des Tränensystems unterliegen aufgrund ihres ständigen
Kontakts mit der Umwelt einer Fülle von exogenen Einflüssen, wie Mikroorganismen oder
pathogen assoziierten Molekülen. Ein funktionelles Abwehrsystem ist daher unerlässlich
zur Vermeidung von Infektionen oder Erkrankungen des Auges und des Tränensystems.
In den letzten Jahren konnten die 4 bislang bekannten Surfactant-Proteine (SP-A, -B,
-C, -D) an der Augenoberfläche und im Tränenapparat nachgewiesen werden. Die Surfactant-Proteine
besitzen in der Lunge lebensnotwendige immunologische und oberflächenaktive Funktionen,
welche im Hinblick auf die Funktionalität und Stabilität des Tränenfilms eine bedeutende
Rolle einnehmen könnten.
Abstract
The amphiphilic surfactant proteins B (SP-B) and C (SP-C) are tightly bound to phospholipids.
These proteins play important roles in maintaining the surface tension-lowering properties
of pulmonary surfactant. Surfactant protein A (SP-A) and D (SP-D) are hydrophilic
and are thought to have a role in recycling surfactant and, especially, in improving
host defense in the lung. Moreover, SP-A supports the hydrophobic surfactant proteins
B and during surfactant subtype assembly and inhibits the secretion of lamellar bodies
into the alveolar space. During recent years surfactant proteins have also been detected
at locations outside the lung such as the lacrimal apparatus. In this review, the
latest information regarding SP function and regulation in the human lacrimal system,
the tear film and the ocular surface is summarised with regard to dry eye, rheological
and antimicrobial properties of the tear film, tear outflow, certain disease states
and possible therapeutic perspectives.
Schlüsselwörter
Surfactant-Proteine - Augenoberfläche - Tränenfilm - Tränenapparat
Key words
surfactant proteins - ocular surface - tear film - lacrimal apparatus
Literatur
- 1
Resnikoff S, Pascolini D, Mariottia S et al.
Global magnitude of visual impairment caused by uncorrected refractive errors in 2004.
Bulletin of the World Health Organization.
2008;
86
63-70
- 2
De Paiva C, Chen Z, Koch D et al.
The Incidence and Risk Factors for Developing Dry Eye After Myopic LASIK.
American Journal of Ophthalmology.
141
Issue 3
438-445
- 3
Michael A.
Lemp Advances in Understanding and Managing Dry Eye Disease.
American Journal of Ophthalmology.
2008;
- 4 McDonald M. ”With LASIK, roughly half of my patients had dry eye complaints after
surgery – and in about half of these, the symptoms were severe.” December/2005 http://RefractiveEyecare.com
- 5
Khali M B, Latkany R A, Speaker M G et al.
Effect of Punctal Plugs in Patients With Low Refractive Errors Considering Refractive
Surgery.
Journal of Refractive Surgery.
2007;
23 (5)
467-471
- 6
Baum J.
Infections of the eye.
Clin Infect Dis.
1995;
21
479-488
- 7
Gritz D C, Whitcher J P.
Topical issues in the treatment of bacterial keratitis.
Int Ophthaomol Clin.
1998;
38
107-114
- 8
Brennan N A, Chantal Coles M L.
Extended wear in perspective.
Invest Ophthalmol Vis Sci.
1997;
74
609-623
- 9
Levartovsky S, Rosenwasser G, Goodman D.
Bacterial keratitis following laser in situ keratomileusis.
Ophthalmology.
2001;
108
321-325
- 10
Fleiszig S MJ, Efron N, Pier G B.
Extended contact lens wear enhances Pseudomonas aeruginosa adherence to human conrneal
epithelium.
Invest Ophthalmol Vis Sci.
1992;
33
2908-2916
- 11 v Brandis H J. Anatomie und Physiologie für Krankenschwestern und andere Medizinalberufe. Fischer.
Stuttgart, New York; 1985 6. Aufl
- 12
Souza G A, Godoy L M, Mann de M.
Identification of 491 proteins in the tear fluid proteome reveals a large number of
proteases and protease inhibitors.
Genome Biol.
2006;
7 (8)
R72
Epub 2006 Aug 10
- 13
Fleming A.
On a remarkable bacteriolytic element found in tissues and secretions.
Proc R Soc B.
1922;
93
306-317
- 14
Pleyer U, Baatz H.
Antibacterial protection of the ocular surface.
Ophthalmologica.
1997;
211 (Suppl 1)
2-8
- 15
Oram J, Reiter B.
Inhibition of bacteria by lactoferrin and other iron-chelating agents.
Biochim Biophys Acta.
1979;
170
351-353
- 16
Kijlstra A.
The role of lactoferrin in the nonspecific immune response on the ocular surface.
Regul Immunol.
1990;
3
193-197
- 17
Fluckinger M, Haas H, Merschak P et al.
Human tear lipocalin exhigits antimicrobial activity by scavenging microbial siderophores.
Antimicrob Agents Chem.
2004;
48
3367-3372
- 18
Mudgil P, Millar T J.
Adsorption of apo- and holo-tear lipocalin to a bovine Meibomian lipid film.
TJ Exp Eye Res.
2008;
86 (4)
622-628 Jan 12
Jan 12. Epub 2008
- 19
Qu X D, Lehrer R I.
Secretory phospholipase A 2 is the principal bactericide for staphylococci and other
gram-positive bacteria in human tears.
Infect Immun.
1998;
66
2791-2799
- 20
Girgis D O, Dajcs J J, O’Callaghan R J.
Phospholipase A 2 activity in normal and Staphylococcus aureus-infected rabbit eyes.
Invest Ophthalmol Vis Sci.
2003;
44
197-202
- 21
Garreis F, Schlorf T, Worlitzsch D et al.
Expanding the Roles of Human-Defensins in Innate Immune Defense at the Ocular Surface:
Arming and Alarming Corneal and Conjunctival Epithelial Cells.
Investigative Ophthalmology & Visual Science (IOVS).
(in press)
- 22
Dermott A M.
Defensins and other antimicrobial peptides at the ocular surface.
Ocul Surf.
2004;
2
229-247
- 23
Fearson D, Austen K.
The alternative pathway of complement: A system for host resistance to microbial infection.
N Engl J Med.
1980;
303
259-261
- 24
Qureshi S T, Gros P, Malo D.
Host resistance to infection: Genetic control of ipopolysaccharide responsiveness
by TOLL-like receptor genes.
Elsevier Science.
: S 0168 – 9525(99)01 782 - 5 TIG
1999;
- 25 Paulsen F, Varoga D, Steven P. et al .Antimicrobial peptides at the ocular surface.
In Zierhut M, Stern M E, Sullivan D A, (eds) Immunology of Lacrimal Gland and Tear
Film.. London: Taylor & Francis; 2005: 97-104
- 26 Garreis F, Gottschalt M, Paulsen F. Antimicrobial peptides as major part of the
innate immune defense at the ocular surface. In Brewitt H, (ed) Research projects
in dry eye syndrome.. Basel: Dev Ophthalmol, Karger; (in press), 2010
- 27
Bräuer L, Kindler C, Jäger K et al.
Detection of surfactant proteins A and D in human tear fluid and the human lacrimal
system.
Invest Ophthalmol Vis Sci.
2007;
48
3945-3953
- 28
Bräuer L, Börgermann J, Johl M et al.
Detection and localization of the hydrophobic surfactant proteins B and C in human
tear fluid and the human lacrimal system.
Curr Eye Res.
2007;
32
931-938
- 29
Von Neegaard K.
Neue Auffassungen über einen Grundbegriff der Atemmechanik.
ZGesamte Exp Med.
1929;
66
373-394
- 30
Klaus M H, Clements J A, Havel R J.
Composition of surface-active material isolatedfrom beef lung.
Proc Natl Acad Sci USA.
1961;
47
1858-1859
- 31
King R J, Klass D J, Gikas E G.
Isolation of apoproteins from canine surface active material.
Am J Pathol.
1973;
224
788-795
- 32
Van Iwaarden F, Welmers B, Verhoef J et al.
Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar
macrophages.
Am J Respir Cell Mol Biol.
1990;
2
91-98
- 33
Polin R A, Fox W W.
Fetal and neonatal physiology.
(3rd ed.).
1997;
1275-1283
- 34
Nogee L M.
Genetics of the hydrophobic surfactant proteins.
Biochim Biophy Acta.
1998;
1408
323-333
- 35
Voorhout W F, Veenendaal T, Haagsman H P et al.
Intracellular processing of pulmonary surfactant protein B in an endosomal/lysosomal
compartment.
Am J Physiol.
1992;
263
479-486
- 36
Crouch E, Wright J R.
Surfactant proteins A and D and pulmonary host defense.
Annu Rev Physiol.
2001;
63
521-554
- 37
Creuwels L AJM, Golde L MG, Haagsman H P.
The pulmonary surfactant system:biochemical and clinical aspects.
Lung.
1997;
175
1-39
- 38
Cole F S, Hamvas van A, Nogee L M.
Genetic disorders of neonatal respiratory function.
Ped Res.
2001;
50
157-162
- 39
Kobayashi T, Nitta K, Takahashi R et al.
Activity of pulmonary surfactant after blocking the associated proteins SP-A and SP-B.
J Appl Physiol.
1991;
71
530-536
- 40
Korfhagen T R, Bruno M D, Ross G F et al.
Altered surfactant function and structure in SP-A gene targeted mice.
Proc Natl Acad Sci U S A.
1996;
93
9594-9599
- 41
Van Iwaarden F, Welmers B, Verhoef J et al.
Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar
macrophages.
Am J Respir Cell Mol Biol.
1990;
2
91-98
- 42
Levine A M, Kurak K E, Bruno M D et al.
Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection.
Am J Respir Cell Mol Biol.
1998;
19
700-708
- 43
Hartshorn K L, Crouch E, White M R et al.
Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria.
Am J Physiol.
1998;
274
L958-L969
- 44
Sastry K, Ezekowitz R A.
Collectins: pattern recognition molecules involved in first line host defense.
Curr Opin Immunol.
1993;
5
59-66
- 45
Ferguson J S, Voelker D R, McCormack F X et al.
Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan
via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria
by macrophages.
J Immunol.
1999;
163
312-321
- 46
Botas C, Poulain F, Akiyama J.
Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking
surfactant protein.
D Proc Natl Acad Sci USA.
1998;
95
11869-11874
- 47
Wert S E, Yoshida M, LeVine A M.
Increased metalloproteinase activity, oxidant production, and emphysema in surfactant
protein D gene-inactivated mice.
Proc Natl Acad Sci USA.
2000;
23
5972-5977
- 48
Phizackerley P J, Town M H, Newman G E.
Hydrophobic proteins of lamellated osmiophilic bodies isolated from pig lung.
Biochem J.
1979;
183
731-736
- 49
Yu S H, Chung W, Olafson R W et al.
Characterization of the small hydrophobic proteins associated with pulmonary surfactant.
Biochim Biophys Acta.
1987;
921
437-448
- 50
Whitsett J A, Hull W M, Ohning B et al.
Immunologic identification of a pulmonary surfactant-associated protein of molecular
weight = 6000 daltons.
Pediatr Res.
1986;
20
744-749
- 51
Yu S H, Wallace D, Bhavnani B et al.
Effect of reconstituted pulmonary surfactant containing the 6000-dalton hydrophobic
protein on lung compliance of prematurely delivered rabbit fetuses.
Pediatr Res.
1988;
23
23-30
- 52
Whitsett J A, Ohning B L, Ross G et al.
Hydrophobic surfactant-associated protein in whole lung surfactant and its importance
for biophysical activity in lung surfactant extracts used for replacement therapy.
Pediatr Res.
1986;
20
460-467
- 53
Possmayer F.
A proposed nomenclature for pulmonary surfactantassociated proteins.
Am Rev Respir Dis.
1988;
138
990-998
- 54
Hawgood S, Shiffer K.
Structures and properties of the surfactantassociated proteins.
Annu Rev Physiol.
1991;
53
375-394
- 55
Glasser S W, Korfhagen T R, Perme C M et al.
Two SP-C genes encoding human pulmonary surfactant proteolipid.
J Biol Chem.
1988;
263
10326-10331
- 56
Jacobs K A, Phelps D S, Steinbrink et al.
Isolation of cDNA clone encoding a high molecular weight precursor to a 6-kDa pulmonary
surfactant-associated protein.
J Biol Chem.
1987;
262
9808-9811
- 57
Yu S H, Possmayer F.
Role of bovine pulmonary surfactant-associated proteins in the surface-active property
of phospholipid mixtures.
Biochim Biophys Acta.
1990;
1046
233-241
- 58
Notter R H, Shapiro D L, Ohning B et al.
Biophysical activity of synthetic phospholipids combined with purified lung surfactant
6000 dalton apoprotein.
Chem Phys Lipids.
1987;
44
1-17
- 59 Spragg R G, Gilliard N, Richman P. The adult respiratory distress syndrome: clinical
aspects relevant to surfactant supplementation. In Robertson, B, Golde L MG Batenburg
JJ, eds Pulmonary Surfactant: From Molecular Biology to Clinical Practice.. Amsterdam:
Elsevier; 1992: 685-703
- 60
Kobayashi van T, Nitta K, Takahashi R et al.
Activity of pulmonary surfactant after blocking the associated proteins SP-A and SP-B.
J Appl Physiol.
1991;
71
530-536
- 61
Ridsdale R A, Palaniyar N, Possmayer F et al.
Formation of folds and vesicles by dipalmitoylphosphatidylcholine monolayers spread
in excess.
J Membr Biol.
2001;
180
21-32
- 62
Paananen R, Sormunen R, Glumoff V et al.
Surfactant proteins A and D in Eustachian tube epithelium.
Am J Physiol Lung Cell Mol Physiol.
2001;
281
660-7
- 63
Kim J K, Kim S S, Rha K W et al.
.
Am J Physiol Lung Cell Mol Physiol.
2007;
292
879-884
- 64
Mo Y K, Kankavi O, Masci P P et al.
Surfactant protein expression in human skin: evidence and implications.
J Invest Dermatol.
2007;
127
381-386
- 65
Sati L, Seval-Celik Y.
Ramazan Demir Lung surfactant proteins in the early human placenta.
Histochem Cell Biol.
DOI: 10.1007 /s00418-009-0642-9
- 66
Bräuer L, Möschter S, Beileke S et al.
Human parotid and submandibular glands express and secrete surfactant proteins A,
B, C and D.
Histochem Cell Biol.
2009;
132 (3)
331-338
- 67
McCulley J P, Shine W E.
Meibomian gland function and the tear lipid layer.
Ocul Surf.
2003;
1
97-106
- 68
Gipson I K, Hori Y, Argueso P et al.
Character of ocular surface mucins and their alteration in dry eye disease.
Ocul Surf.
2004;
2
131-148
- 69
Jumblatt M M, McKenzie R W, Steele P S et al.
MUC7 expression in the human lacrimal gland and conjunctiva.
Cornea.
2003;
22
41-45
- 70
Paulsen F, Langer G, Hoffmann W et al.
Human lacrimal gland mucins.
Cell Tissue Res.
2004;
316
167-177
- 71
Paulsen F.
Cell and molecular biology of human lacrimal gland and nasolacrimal duct mucins.
Int Rev Cytol.
2006;
249
229-279
- 72
Paulsen F, Berry M.
Mucins and TFF peptides of the tear film and lacrimal apparatus.
Prog Histochem Cytochem.
2006;
41
1-53
- 73
Madsen J, Kliem A, Tornoe I et al.
Localization of lung surfactant protein D on mucosal surfaces in human tissues.
J Immunol.
2000;
164
5866-5870
- 74
Stahlman M T, Gray M E, Hull W M et al.
Immunolocalization of surfactant protein-D (SP-D) in human fetal, newborn, and adult
tissues.
J Histochem Cytochem.
2002;
50
651-660
- 75
Akiyama J, Hoffman A, Brown C et al.
Tissue distribution of surfactant proteins A and D in the mouse.
J Histochem Cytochem.
2002;
50
993-996
- 76
Ni M, Evans D J, Hawgood S et al.
Surfactant protein D is present in human tear fluid and the cornea and inhibits epithelial
cell invasion by Pseudomonas aeruginosa.
Infect Immun.
2005;
73
2147-2156
- 77
Dobbie J W, Tasiaux N, Meijers P et al.
Lamellar bodies in synoviocytes, mesothelium and specific epithelia as possible site
of auto-antigen in rheumatoid disease.
Br J Rheumatol.
1994;
33
508-519
- 78
Diebold Y, Calonge M, Enriquez de Salamanca A.
Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal
human conjunctiva.
Invest Ophthalmol Vis Sci.
2003;
44
4263-4274
- 79
Araki-Sasaki K, Ohashi Y, Sasabe T.
An SV 40-immortalized human corneal epithelial cell line and its characterization.
Invest Ophthalmol Vis Sci.
1995;
36
614-621
- 80
Heiligenhaus A, Koch J M, Kruse F E et al.
Diagnostik und Differenzierung von Benetzungsstörungen.
Ophthalmologe.
1995;
92
6-11
- 81
Narayanan S, Miller W L, McDermott A M.
Expression of human beta-defensins in conjunctival epithelium: relevance to dry eye
disease.
Invest Ophthalmol Vis Sci.
2003;
44
3795-3801
- 82
Sorensen G L, Madsen J, Kejling K et al.
Surfactant protein D is proatherogenic in mice.
Am J physiol Hear Circ Physiol.
2006;
290
H2286-H2294
- 83
Bräuer L, Paulsen F.
Tear film and ocular surface surfactants.
J Epithelial Biol Pharmacol.
2008;
1
62-67
Martin Schicht
Institut für Anatomie und Zellbiologie, Martin-Luther-Universität Halle-Wittenberg
Große Steinstraße 52
06097 Halle
Phone: ++ 49/3 45/5 57 19 44
Fax: ++ 49/3 45/5 57 17 00
Email: martin.schicht@medizin.uni-halle.de